行业动态
 
首页 > 智慧校园 > 行业动态
 
人脸识别技术有多强?

如何用Python实现人脸识别:

示例一(1行代码实现人脸识别):

1. 首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片。其中每个人一张图片,图片以人的名字命名:


known_people文件夹下有babe、成龙、容祖儿的照片

2. 接下来,你需要准备另一个文件夹,里面是你要识别的图片:


unknown_pic文件夹下是要识别的图片,其中韩红是机器不认识的

3. 然后你就可以运行face_recognition命令了,把刚刚准备的两个文件夹作为参数传入,命令就会返回需要识别的图片中都出现了谁:


识别成功!!!

示例二(识别图片中的所有人脸并显示出来):

# filename : find_faces_in_picture.py

# -*- coding: utf-8 -*-

# 导入pil模块 ,可用命令安装 apt-get install python-Imagingfrom PIL

import Image

# 导入face_recogntion模块,可用命令安装 pip install face_recognition

import face_recognition

# 将jpg文件加载到numpy 数组中

image = face_recognition.load_image_file("/opt/face/unknown_pic/all_star.jpg")

# 使用默认的给予HOG模型查找图像中所有人脸

# 这个方法已经相当准确了,但还是不如CNN模型那么准确,因为没有使用GPU加速

# 另请参见: find_faces_in_picture_cnn.py

face_locations = face_recognition.face_locations(image)

# 使用CNN模型

# face_locations = face_recognition.

face_locations(image, number_of_times_to_upsample=0, model="cnn")

# 打印:我从图片中找到了 多少 张人脸

print("I found {} face(s) in this photograph.".format(len(face_locations)))

# 循环找到的所有人脸

for face_location in face_locations:

# 打印每张脸的位置信息

    top, right, bottom, left = face_location

    print("A face is located at pixel location Top:

      {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))

# 指定人脸的位置信息,然后显示人脸图片

    face_image = image[top:bottom, left:right]

    pil_image = Image.fromarray(face_image)

    pil_image.show()


用于识别的图片 # 执行python文件 $ python find_faces_in_picture.py


从图片中识别出7张人脸,并显示出来

示例三(自动识别人脸特征):

# filename : find_facial_features_in_picture.py

# -*- coding: utf-8 -*-

# 导入pil模块 ,可用命令安装 apt-get install python-Imaging

from PIL import Image, ImageDraw

# 导入face_recogntion模块,可用命令安装 pip install face_recognition

import face_recognition

# 将jpg文件加载到numpy 数组中

image = face_recognition.load_image_file("biden.jpg")

#查找图像中所有面部的所有面部特征

face_landmarks_list = face_recognition.face_landmarks(image)

print("I found {} face(s) in this photograph.".format(len(face_landmarks_list)))

for face_landmarks in face_landmarks_list:

#打印此图像中每个面部特征的位置

  facial_features = [

    'chin',

    'left_eyebrow',

    'right_eyebrow',

    'nose_bridge',

    'nose_tip',

    'left_eye',

    'right_eye',

    'top_lip',

    'bottom_lip'

   ]

for facial_feature in facial_features:

    print("The {} in this face has the following points: {}".format(facial_feature,

face_landmarks[facial_feature]))

#让我们在图像中描绘出每个人脸特征!

  pil_image = Image.fromarray(image)

  d = ImageDraw.Draw(pil_image)

  for facial_feature in facial_features:

    d.line(face_landmarks[facial_feature], width=5)

  pil_image.show()


自动识别出人脸特征

示例四(识别人脸鉴定是哪个人):

# filename : recognize_faces_in_pictures.py

# -*- conding: utf-8 -*-

# 导入face_recogntion模块,可用命令安装 pip install face_recognition

import face_recognition

#将jpg文件加载到numpy数组中

babe_image = face_recognition.load_image_file("/opt/face/known_people/babe.jpeg")

Rong_zhu_er_image = face_recognition.load_image_file("/opt/face/known_people/Rong zhu er.jpg")

unknown_image = face_recognition.load_image_file("/opt/face/unknown_pic/babe2.jpg")

#获取每个图像文件中每个面部的面部编码

#由于每个图像中可能有多个面,所以返回一个编码列表。

#但是由于我知道每个图像只有一个脸,我只关心每个图像中的第一个编码,所以我取索引0。

babe_face_encoding = face_recognition.face_encodings(babe_image)[0]

Rong_zhu_er_face_encoding = face_recognition.face_encodings(Rong_zhu_er_image)[0]

unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0]

known_faces = [

  babe_face_encoding,

  Rong_zhu_er_face_encoding

]

#结果是True/false的数组,未知面孔known_faces阵列中的任何人相匹配的结果

results = face_recognition.compare_faces(known_faces, unknown_face_encoding)

print("这个未知面孔是 Babe 吗? {}".format(results[0]))

print("这个未知面孔是 容祖儿 吗? {}".format(results[1]))

print("这个未知面孔是 我们从未见过的新面孔吗? {}".format(not True in results))


显示结果如图

示例五(识别人脸特征并美颜):

# filename : digital_makeup.py

# -*- coding: utf-8 -*-

# 导入pil模块 ,可用命令安装 apt-get install python-Imaging

from PIL import Image, ImageDraw

# 导入face_recogntion模块,可用命令安装 pip install face_recognition

import face_recognition

#将jpg文件加载到numpy数组中

image = face_recognition.load_image_file("biden.jpg")

#查找图像中所有面部的所有面部特征

face_landmarks_list = face_recognition.face_landmarks(image)

for face_landmarks in face_landmarks_list:

  pil_image = Image.fromarray(image)

  d = ImageDraw.Draw(pil_image, 'RGBA')

  #让眉毛变成了一场噩梦

  d.polygon(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 128))

  d.polygon(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 128))

  d.line(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 150), width=5)

  d.line(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 150), width=5)

  #光泽的嘴唇

  d.polygon(face_landmarks['top_lip'], fill=(150, 0, 0, 128))

  d.polygon(face_landmarks['bottom_lip'], fill=(150, 0, 0, 128))

  d.line(face_landmarks['top_lip'], fill=(150, 0, 0, 64), width=8)

  d.line(face_landmarks['bottom_lip'], fill=(150, 0, 0, 64), width=8)

  #闪耀眼睛

  d.polygon(face_landmarks['left_eye'], fill=(255, 255, 255, 30))

  d.polygon(face_landmarks['right_eye'], fill=(255, 255, 255, 30))

  #涂一些眼线

  d.line(face_landmarks['left_eye'] + [face_landmarks['left_eye'][0]], fill=(0, 0, 0, 110), width=6)

  d.line(face_landmarks['right_eye'] + [face_landmarks['right_eye'][0]], fill=(0, 0, 0, 110), width=6)

  pil_image.show()


徐州凯博智能科技有限公司
江苏省邳州市长江路6号东方国贸506室
0516-86995001
友情链接
徐州网站建设 智慧教育 人脸识别 互动课堂 答题器 智慧 教育 闸机 校园 安全
关于凯博
凯博概况
企业文化
企业荣誉
董事长寄语
联系方式
智慧校园
平安校园
太阳能光伏系列
太阳能发电
光伏发电
太阳能光伏路灯
联系方式
技术支持:徐州慧网 徐州凯博智能科技有限公司 电话:0516-86995001 地址:江苏省邳州市长江路6号东方国贸506室